12^{施工計画}

鋼トラス橋端部鉛直材取替における安全性の確保

日本橋梁建設土木施工管理技士会

日本橋梁株式会社					
現場担当		監理技術者		設計担当	
鈴 木	琢 也〇	上山	勉	川 村	弘 昌

1. はじめに

本工事は、中国自動車道の北房IC ~大佐スマー トIC間に位置する橋梁7橋の床版取替・鋼桁補 修のうち下古谷橋(上り線)におけるトラス橋の 鉛直材取替を施工する工事である。

下古谷橋トラス橋における端支点の鉛直材は 図-1に示す通り腐食による損傷が著しく、部材 を構成する鋼板の板厚が減少し、一部孔が空いて いる状態であった。これらの損傷により、橋梁の 耐荷性能が低下していることが判明したため連結 部の添接板と高力ボルトを取り外し新しい鉛直材 に取替える計画とした。

本稿では、鉛直材取替を施工するにあたって安 全に施工するために検討した内容とその効果につ いて述べる。

工事概要

(1) 工事名:中国自動車道(特定更新等)
北房IC ~大佐スマートIC間(上り線)

土木更新(その2)工事

- (2) 発 注 者:西日本高速道路(株)中国支社
- (3) 工事場所:岡山県真庭市五名~新見市高尾
- (4) 工 期:令和2年4月18日~令和3年6月11日
- (5) 施 工: 熊谷組・オリエンタル白石・日本 橋梁特定建設工事共同企業体

図-1 鉛直材の腐食損傷状態

2. 現場における問題点

当該部材は常時の死活荷重を受け持つ主要部材 であり、かつ地震や風の影響についても荷重を支 点部に伝達する重要な役割を担っている。よって 部材が撤去されている状態においても構造として 安定した状態でなおかつ安全な状態を確保するこ とが課題であった。また、鉛直材取替前後におい て構造系に変化が生じない施工方法が要求され た。

本工事における技術的な留意点を下記に記す。

鉛直材に作用している死荷重による圧縮軸
力を除去し、構造を安定させた状態で既設の鉛直
材を撤去する必要がある。

② 当該橋梁の道路線形は平面曲率 R = 600m を有しており、トラスの弦材は各点位置で折れた 配置としているので、左右の床版張出し長が変化 している。これにより鉛直材に生じる力も異なる ことから、鉛直材に作用している力を除去する方 法を検討するにあたっては現状で鉛直材に作用し ている圧縮軸力を詳細に把握する必要がある。

③ 鉛直材取替前後において構造系に変化が生 じないようにするためには、新しく取替えた鉛直 材に既設部材と同等の圧縮軸力が発生している必 要がある。

④ 鉛直材が撤去された状態で地震が発生する ことも想定して、水平方向に対する構造の安定を 担保する必要がある。

3. 工夫・改善点と適用結果

具体的な方策として下記の6項目を実施した。 3-1 立体骨組み解析とX線残留応力計測

鉛直材に発生している死荷重による圧縮軸力を 把握するために、立体骨組み解析を実施した。ま た、立体骨組み解析により算出した圧縮軸力の妥 当性を確認するためにX線残留応力装置を使用し て既設の鉛直材に作用している軸応力を計測し て、両者の値を比較した。

X線残留応力の計測は、図-2に示す通り、鉛 直材中央付近の4面、板幅中央位置で実施した。

図-2 X線残留応力計測状況

立体骨組み解析により算出された作用応力度は 14MPaという値であったのに対し、X線残量応 力の測定結果は258MPaであった。

これは表-1に示す通り、計測した残留応力に は荷重による発生応力だけでなく、鋼板の製造過 程で発生する残留応力と部材製作過程で溶接によ り発生する残留応力などが含まれていたことによ ると考えられた。

今回のX線残留応力計測で荷重による発生応力 の正確な値は計測できなかったが、想定していな い荷重や変形に起因する発生応力ではないと推定 することができたため、立体骨組み解析により算 出した圧縮軸力を設計値として採用した。

表-1 推定残留応力と計測値の比較

	残留応力および 発生応力(Mpa)	X線残留応力測定機に よる測定値(Mpa)
鋼材の残留応力	55	-
溶接による残留応力	-59	-
表面処理による残留応力	-374	-
荷重による発生応力	-14	-
合計発生応力	-392	-258

図-3 軸力除去装置(橋面上)

図-4 軸力除去装置(橋面下)

3-2 鉛直材の軸力除去方法

鉛直材の軸力を除去する方法として、図-3に 示す通りトラス上弦材格点上と橋台パラペット上 を支点とする仮設梁を主構線上の橋面上に配置し た。これを反力受けとして、図-4に示す通りPC 鋼棒および油圧ジャッキを用いた引き上げ装置で 鉛直材上端の上弦材の格点を持ち上げる方法で鉛 直材に作用する圧縮軸力を除去した。

3-3 FEM解析の実施

立体骨組み解析で算出した圧縮軸力を基に 図-5に示す軸力除去のモデルを再現したFEM 解析で鉛直材の荷重除去に必要なジャッキアップ 力を算出した。また、ジャッキアップをする際に 床版や壁高欄の剛性によりジャッキアップ力が大 きくなることが懸念されたため、事前に床版と壁 高欄を切断したモデルについても検討を実施した。 この結果、ジャッキアップ力は床版と壁高欄を切 断することで70%程度に低減することができた。

図-5 軸力除去のFEM解析モデル

3-4 ひずみ計測による発生応力度の管理 実施工においては施工誤差も見込まれるため、 あらかじめ既設鉛直材に設置したひずみゲージに より部材応力の除去状況を監視することとした。

既設の鉛直材に発生している圧縮軸力を完全に 除去できた状態は、ひずみ計測の値に変化がなく なった時点をその状態とすることにした。

ジャッキアップ作業は、ひずみ計測4面に加え て油圧ジャッキの反力により鉛直材に生じる引張 力を監視し、立体骨組み解析とFEM解析で算出し た設計値と比較しながら実施することで想定外の 力が作用していないかを確認しながら実施した。

ジャキアップ作業は、FEM解析による設計 ジャッキアップ力である307kNの50%から段階的 に反力を増加させた。設計ジャッキアップ力の 170%の520kNを作用させた段階で、目視による 浮きが確認されるとともに、ひずみ計測の値が58 µで上限となったため、発生軸力が0kNになっ たと判断し完了とした。ジャッキアップ時のひず み計測推移を**表-2**に示す。 ひずみ計測により得られた値より算出される発 生応力度は、立体骨組み解析から算出した発生応 力度14.3MPaに対して、11.6MPa(81%)となった。

表-2 ジャッキアップ時のひずみ計測推移

					単位:με
計測条件	A(下関側)	B(R側)	C(吹田側)	D(L側)	平均值
ゼロ点計測	0	0	0	0	0
設計荷重 約10%	9	7	5	7	7
添接板上部ボルト取外し	13	12	-2	-4	5
設計荷重 50%	29	33	12	5	20
設計荷重 70%	39	47	18	9	28
添接板下部ボルト緩め	37	45	18	6	26
設計荷重 80%	45	54	22	10	33
設計荷重 90%	48	58	24	11	35
設計荷重 100%	53	65	28	13	40
設計荷重 110%	56	70	30	14	43
設計荷重 120%	61	75	33	15	46
設計荷重 130%	67	81	35	17	50
設計荷重 140%	72	87	37	18	54
設計荷重 150%	75	91	38	18	56
設計荷重 160%	77	94	40	18	57
設計荷重 170%	78	95	41	18	58
ジャッキアップ完了(180%)	78	95	41	18	58

鉛直材取替後の構造系に変化が生じないように するためには、ジャッキダウン時にジャッキアッ プ時と同等の荷重が再移行できていることを確認 する必要があった。

そこで新設部材にも中央4面にひずみゲージを 設置してジャッキダウン時にもひずみ計測を実 施した。ジャッキダウン時のひずみ計測推移を 表-3に示す。

表-3 ジャッキダウン時のひずみ計測推移

					単位:με
計測条件	A(下関側)	B(R側)	C(吹田側)	D(L側)	平均值
ゼロ点計測	0	0	0	0	0
ジャッキダウン完了	-78	-64	-55	-72	-67

ひずみ量が67μで上限となり、ひずみ計測に より得られたひずみ値より算出される発生応力 度は、立体骨組み解析から算出した発生応力度 14.3MPaに対して、13.4MPa(94%)となった。 これにより、取替前後の鉛直材に同等の荷重が再 移行したことが確認できた。

3-5 橋面高さの監視

ジャッキアップ作業中は、橋面高さについても 大きな変位が生じていないかを監視するために 図-6、7に示す通り鉛直材直上の橋面に回転レー ザーレベルとレーザーセンサーを設置した。この システムは、常時、橋面の鉛直変位を監視し変位 量が管理値である3mmを超えると警報音・赤色 灯の点灯によりアラートが伝達されるとともに携 帯端末にその記録が転送されるシステムである。

図-6 橋面上設備図

図-7 回転レーザーレベルの設置状況

図-8 回転レーザーレベルの変位計測推移

図-8に示す通り、レーザーレベルの変位量 は1.4mmを示し、ジャッキダウンまでの期間中 0.3mm程度の変動幅を維持していた。これによ り、鉛直材の撤去作業中に想定外の変位は発生し ていなかったことが確認できた。 3-6 変位制限ストッパーの設置

鉛直材が撤去された状態で地震が発生すること を想定して、水平方向に対する構造の安定を担保 する必要があった。鉛直材が撤去されている状態 では橋軸直角方向の水平力を支承部へ伝達する機 能が失われているため、これを補完するため壁高 欄両側に変位制限ストッパーを設置した。部材設 計に適用する設計水平震度はレベル2地震動の 1/2とした。

図-9 既設橋脚分割要領図

4. おわりに

全国のインフラは経年劣化により補修を余儀な くされており、鋼橋梁も当補修工事の鉛直材取替 のような主要部材取替の事例も増加している。

課題も残しているが現状可能な技術を駆使しシ ンプルな施工を計画・検討したことにより円滑か つ安全に取替を完遂することができた。今回の取 替の経験を活かし、これからもより安全で正確な 計画施工をしていきたいと考えている。

最後に本工事の施工にあたりご協力いただいた 関係者の皆様に謝意を申し上げます。

図-10 鉛直材取替の様子