ITマネジメント

26

C I Mへの試み

1. はじめに

CIM モデルを作成し現場施工を行った。図-1 は雪崩防護柵の完成写真とCIM モデル。部材名、 数量等の属性を付加した。鋼製の防護柵を40°前 後の急斜面に24基配置する。2期の工事で測量か ら簡易な設計さらに施工管理まで一連で実施。3 次元(以下、3D)測量データを利用して取組ん だ。

設計では現況地盤と構造物の摺付けを可視化し 整合性を図る。3Dモデルから2次元(以下2D) 情報や属性を入出力して活用。さらに施工管理で は3Dで情報化施工も実施、施工の効率化を検証。

2件工事、2年間で検討そして試行した CIM。 実施の過程を中心に紹介しさらに活用事例等も報 告する。

 工事概要 土木工事 2件工事
 (1) 工事名:妙高山地区(燕)地域防災対策 総合治山工事(H24ゼロ国)1件目工事 妙高山地区(燕)地域防災対策 総合治山工事(H25ゼロ国)2件目工事

- (2) 発注者:上越森林管理署
- (3) 工事場所:新潟県妙高市大字妙高山国有林
- (4) 工 期:平成25年3月27日~
 平成25年11月30日
 (H24ゼロ国)…1件目工事

新潟県土木施工管理技士会
猪又建設株式会社
工事長
川 上 康 弘
Yasuhiro Kawakami

平成26年3月20日~ 平成26年11月28日 (H25ゼロ国)…2件目工事

図-1 完成写真と CIM モデル

2. 現場における問題点

現場の範囲は横断、縦断方向それぞれ約100m。 現況測量、3Dモデリングおよび施工管理。3 つの行程で問題と課題があった。

①地形に沿った構造物の配置計画と測量方法。

- ②現況地形図と3D図の作図方法。
- ③ CIM モデルを活用した現場管理の効果。
 図-2に業務毎の問題点と課題を示す。

業務内容		条 件·行 程	問題点課題		
⊕ 調査・測量		イ)急斜面での作業。 ロ)1アール以上の面積。	 1.他工法の比較はどうか。 2.測量の方法はどうする。 3.3Dデータを残せるか。 		
② モデリング 30化		ハ) 属性を持った地形モデルの作成。 ニ) 鋼材や躯体を詳細に3D化する。 ホ) 属性付加の程度。	1.現地盤の3D図、作成方法はどう するか。 2.個材の2Dデータの提供がない。 3.3Dモデルにどこまで情報を 付加するか。		
③ 施工管理	N.	へ)3Dデータの活用。	1.どの行程でどのように使うか。		
	3.45	ト/3Dモテルと施工管理システム	2.」扱わ位置出し、出来形官理にも 使えるか。		

図-2 業務内容~課題~問題点

3. 工夫・改善点と適用結果

3-1-1. 調査・測量 他工法の検討 ①他工法の比較…「3Dレーザースキャナで現況 地盤を取得したい」当社に設備がないため測量会 社に相談して現地確認した。以下の理由で現場に は適さないとのことで断念した。

- ア)急峻な斜面に凸凹。植生も密であり不可視 部が発生する。
- イ)安全で不動な基準点が設置出来ない。
- ウ) 当社にデータを動かすソフトがないので高 額になる(100万円以上)。

3-1-2. 測量方法 3D データ取得方法 ①測量方法…ノンプリズム光波を使用した「3D 放射観測」で観測点のX,YおよびZ座標を取得 した。まず施工に支障のない場所に基準点、2点 測設。機械点を開放トラバースで増設し、同時に 現況を放射観測。後方交会法も併用。急峻な岩盤 斜面等はノンプリズムで測定した。図-3に測量 状況を示す。10,000㎡の調査範囲を網目状に観測、 地形の変化点も詳細に測量した。約700点の現況 観測。所要工程は3人工、6日間であった。

図−3 測量状況

3-2-1. 現況地盤3D化

使用した IT 機器であるソフト、ハード類を図 -4に示す。3DCAD、スマートフォン以外、当 社が所有する設備で CIM に取組んだ。

I.座標データ取込…測量時に機器②、③で取得 した sima データ。この3D測量結果を施工管理 システムに取込むことから作業を始めた。図-5 に作業内容、手順および時間を示す。

図-4 使用 IT 機器

現況地盤3次元化				構	造物3次元	化	
	(h)は概算	「作業時間					
①X,YZ座標取込			躯体2次:	元図作成	(14.0)	部材2次:	元図作成
simaデータ	(0.2)		コンクリ	一ト部分		鋼材、ボ	ルト部品
施工官増システム					2/次元CAD		
•		1期(21.0)	2期(14.0)		1) I)	/	
 ②3次元コンター作成 11辺図 dugデータ 	(0.3)	構造物酮	记置計画		躯体、部	お次元化 成	00
2次式CAD	-	2次元	CAD		2,3次	TCAD	(120)
¥				\backslash	0	/	(18.0)
(33次元コンター取込	()				属性	付加	
現況図 dwgナータ 3次元CAD	(0.2)				<u>名称·</u> 可 3次万	法· <u>贺重</u> CAD	
• • • • • • • • • • • • • • • • • • •		延べ日数:	約11日間	<u> </u>	3	/	
④現況地盤	>	合	成	<	構造物	加配置	
<u>3次元凶作成</u> 3次元CAD	(0.5)	<u>3次元モ</u> 3次元	<u>ァル完成</u> 		2.3次	TCAD	(8.0)

図-5 現況地盤、構造物3D化作業手順

I.3Dコンター作成…2DCADで等高線を座標
 データから作図する「コンター自動発生」を利用。
 20分程度で1m間隔の等高線を作成。機器⑤の
 施工管理システムには付属しない機能であるため、
 他ソフトで作図した(図-6)。

図-6 コンター作成

Ⅲ. 3Dコンター取込…ⅡのDWGデータを3
 DCADに取込む。自動で立体化される(図-7)。
 X, Y, Z 情報を持った DWG データ。3DCAD で
 読込むと立体表示される。数分の作業。

図-7 3Dコンター

Ⅳ. 現況地盤3D図作成…地盤作成ツールで1m ピッチの等高線をつなぐ。起伏を明確にするため 色を付ける。30分程度の作業である。現況地盤3 次元化完了。2DCADでは判断できない斜面の 凹凸等を可視化出来た(図-8)。

図-8 現況地盤3D

3-2-2. 構造物 3D 化

I. 躯体と部材の3D化…「2D図を書いてから 3Dモデルを作成する。」現状では構造物は2D 図を基準にして3D化している。鋼材や部材の詳 細寸法が必要となった。メーカーに部材のCAD 図を求めた。CIM がまだ理解されていないのが 理由か提供はなかった。現物の寸法を測り2D図 を作成、3D化した(図-9)。

図-9 ハイテンションボルトの作図状況と配置

Ⅱ.属性付加…構造物を①山側基礎②谷側基礎③
 鋼材と大きく3つのブロックに分けてグループ化した。それぞれに名称、寸法、数量情報および施工後にはコンクリート打設日等の情報を付加。鋼材は種類毎に重量も追加。マウスでポイントするだけで情報が表示される(図-10)。

図-10 属性付加状況

 Ⅲ.構造物配置計画…現況地盤3D化のⅡで作成 した2D現況図に構造物を配置していく(図-11)。
 上段、中段、下段それぞれ等高線上に構造物24基 を配置。

図-11 構造物配置

Ⅳ. 合成、3Dモデル完成…現況地盤3D化のⅣ で作図した図に構造物を合成。位置合わせはⅢの 2D図を基準とする。地山の起伏に見合った配置 を施工前に判明出来た(図-12)。

図-12 側面図と上面図

3-3-1.施工管理 3Dデータの活用
 ①任意断面の取得…横断図や構造物の断面図が必要な場合に適用。任意位置で3D図をカットして
 DWGで出力。2DCADで編集等可能(図-13)。

図-13 任意断面の抽出

②書類作成と合意形成…協議書類や数量計算書での添付図は全て3D図を使用。図-14は鋼材組立 足場の必要性を監督職員に説明。

図-14 発注者協議状況 スマートフォンも利用

3-3-2. 施工管理3Dモデルと出来形管理

法面植生工の面積…植生マット工施工箇所所。 巻尺測定(以下、①)とTS測定(以下、②)に よる3D観測の2方法で検証した。計測状況を図 -15に示す。①と同じポイントを3D放射観測で 測量。3DCADで座標を読込み立体化。面積を 算出する。

①、②の展開図を図-16に示す。さらに2方法の測定結果比較を表-1に示し両者を比較する。

図−15 計測状況

図-16 法面測定展開

表-1 測定比較

項目 方法	作業者数	測定時間	作図時間	測定面積
①巻尺測定	3人	35分	40分	376.1 m2
②TS測定	2人	15分	25分	374.3m2

面積では①が1.8m²多くなった。点間を直線と みなし自動算出を行う②。①は測定面の凹凸に沿 って計測されたため差異が発生したと判断される。 測定時間やデータ処理は②が①に比べ約1/2で作 業可能な結果。3D情報化施工の効率化が確認で きた。

4. 終わりに

「地形に沿って構造物が配置されて、美観も優れている」検査官の講評を得た。地形と構造物の 不整合個所を調整。面積の自動集計による効率化、 3D図から2D図へ自動作図、さらに発注者協 議の円滑化等にもCIMモデルが活用出来た。 一方ではまだ CIM 認知度の低さを痛感。測量 やモデリングでは試行錯誤し労力を費やした等、 課題も見えた「CIM への試み」であった。

これから建設業界で主流になる CIM。2Dから3Dへ乗遅れのないように勉強しなければならない。そして土木施工管理技士として CIM を普及、啓発させていきたい。